• 打印
  • 收藏
收藏成功
分享

氮化镓半导体材料研究与应用现状


打开文本图片集

电力电子、新能源、电动汽车、5G通讯、高速轨道列车、能源互联网和智能工业等领域的兴起,对功率器件的性能提出了越来越高的要求。但传统硅(Si)器件已达到材料的物理极限,无法满足当前应用场景的需求。作为第3代半导体材料的典型代表,氮化镓(GaN)在1928年由Johason等人首次成功制备,在一个大气压下,其晶体一般呈六方纤锌矿结构,其化学性质稳定,具有宽带隙(3.39eV)、高击穿电压(3×106V/cm)、高电子迁移率(25℃,1000cm2/V·s)、高异质结面电荷密度(1×1013cm-2)等诸多良好的电化学特性,相对于第1代半导体材料Si和第2代半导体材料砷化镓(GaAs)器件而言,GaN器件可以在更高频率、更高功率、更高温度的情况下工作[1-3],因而被认为是制备高温、高频、大功率器件的首选材料之一。(剩余5160字)

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。

畅销排行榜
monitor