• 打印
  • 收藏
  • 加入书签
添加成功
收藏成功
分享

人工智能在作战指挥中的应用

在未来战争中,决策优势的获取还将取决于作战指挥辅助系统的能力

在未来战争中,决策优势的获取已不再单纯取决于指挥员的智慧,还将取决于作战指挥辅助系统的能力。作战指挥辅助决策预案制定的可靠性和详尽程度、人机交互的便捷性、预案优化的针对性,在赢得决策优势中所起到的作用尤为重要。基于实时战场态势数据,通过平行仿真推演作战方案,预测战爭演进趋势,自动匹配最佳行动策略。

利用人工智能技术开发作战指挥辅助决策系统,可以根据实际作战任务,快速抽取并组织形成支撑决策数据,对关联态势进行综合展示,也可以根据交战规则和认知模型,在自学习进化的基础上进行辅助决策,自动生成行动预案并进行预演,实现对战场事物、业务流程、行为方式的智能化决策,并将指挥员的意图指令实时准确地作用于被指挥对象,实施正确、最优的指挥控制。

人工智能应用于作战行动方案执行

在作战行动方案执行过程中,通过无线车载定位终端、头盔和眼镜等穿戴式设备,为单兵配备无线个人手持定位终端和视频终端,实施智能化远程指挥控制;运用身份识别、语义识别、语音识别、手势识别、行为识别、脑电识别、视觉跟踪、感觉反馈等人机交互技术,实现指挥单元、精确打击武器与信息应用系统之间的无障碍沟通;各作战单元利用人工智能技术,快速融合和分析战场信息,以便将结果发送给指挥员。

在未来战场上,指挥员通常会获得大量信息,容易产生信息过载的风险。在作战行动方案执行的过程中,伴随着战场态势的快速变化,原方案可能会随时失效,指挥员需要具备较快的重新计划能力,而人工智能技术可以为指挥员及时提供备选方案。例如,Q学习是一种强化学习算法,可以在不使用大型数据集或推理信息的情况下,学习最优智能体的状态和行为组合,应用于空战目标分配;使用迁移学习来减少学习时间,快速开发一个智能体在新场景中的行为。例如,在不同的2对2空战场景中学习作战规则时,可以使用已经具备2对1空战场景经验的智能体,最小化进一步的学习过程。此外,还可以利用序列到序列深度学习算法和摘要生成式方法来形成作战行动总结报告,也可以利用将讲话转换为文本的方法,目前的人工智能技术可以实现较为准确的语音识别能力。

在作战指挥中应用人工智能的目标,并不是要完全替代人类智能,而是使人工智能与人类智能有机融合,实现功能互补、相得益彰,以进一步增强人类智能,帮助指挥员在指挥、管理和作战行动中处理一些不擅长的人工业务,从繁杂的重复性工作中解放出来,转而专注于战争谋划、行动协同、指挥决策等工作上,从而更好地发挥人在战争中的主体作用,更高效地完成作战指挥任务。

责任编辑:张传良

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。
畅销排行榜
monitor